skip to main content


Search for: All records

Creators/Authors contains: "Cheng, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The simulations of clouds and surface radiation from 10 CMIP6 models and their CMIP5 predecessors are compared to the ARM ground-based observations over different climate regions. Compared to the ARM radar-lidar derived total cloud fractions (CFT) and cloud fraction vertical distributions over the six selected sites, both CMIP5 and CMIP6 significantly underestimated CFTand low-level CF over the Northern Hemispheric midlatitude sites (SGPC1 and ENAC1), although the biases are generally smaller in CMIP6. Over the tropical oceanic site (TWPC2), 5 out of 10 CMIP6 models better simulated low-level CF than their CMIP5 predecessors. CMIP6 simulations generally agreed well with the ARM observations in CFTand cloud fraction vertical distributions over the tropical continental (MAOM1) and coastal (TWPC3) sites but missed the transitions between dry and wet seasons, similar to CMIP5 simulations. The improvements in downwelling shortwave fluxes (SWdn) at the surface from the majority of CMIP6 compared to CMIP5 primarily resulted from the improved cloud fraction simulations, especially over the SGPC1, ENAC1, and TWPC3 sites. By contrast, both CMIP5 and CMIP6 models exhibited diverse performances of clouds and shortwave radiation over the Arctic site (NSAC1), where CMIP6 models produced more clouds than CMIP5 models, especially for the low-level clouds. The comparisons between observations and CMIP5 and CMIP6 simulations provide valuable quantitative assessments of the accuracy of mean states and variabilities in the model simulations and shed light on general directions to improve climate models in different regions.

     
    more » « less
  2. null (Ed.)
  3. This symposium aims to explore current research working toward conceptualizing and measuring productive disciplinary engagement (PDE) contextualized in diverse learning and project contexts. Disciplinary engagement is critical for fostering students’ deep, integrated understanding of STEM content and disciplinary practices. However, there are significant challenges to reaching this engagement quality, with CSCL environments providing opportunities and supports for engagement, but also posing challenges. This symposium aims to account for recent developments, as presenters showcase rich range in exploring application of PDE in diverse domains, grade bands, and learning contexts. The presentations also showcase a range of methods to analyze PDE as collective, situated, cross-contextual, dynamic, and generative. 
    more » « less